Specificity of TGFβ signaling is conferred by distinct type I receptors and their associated SMAD proteins in Caenorhabditis elegans

نویسندگان

  • Srikant Krishna
  • Lisa L. Maduzia
  • Richard W. Padgett
چکیده

In C. elegans, the TGFβ-like type II receptor daf-4 is required for two distinct signaling pathways. In association with the type I receptor daf-1, it functions in the dauer pathway. In addition, it is also required for body size determination and male tail patterning, roles which do not require daf-1. In an effort to determine how two different signals are transmitted through daf-4, we looked for other potential signaling partners for DAF-4. We have cloned and characterized a novel type I receptor and show that it is encoded by sma-6. Mutations in sma6 generate the reduced body size (Sma) and abnormal mail tail (Mab) phenotypes identical to those observed in daf-4 and sma-2, sma-3, sma-4 mutants (C. elegans Smads), indicating that they function in a common signaling pathway. However, mutations in sma-6, sma-2, sma-3, or sma-4 do not produce constitutive dauers, which demonstrates that the unique biological functions of daf4 are mediated by distinct type I receptors functioning in parallel pathways. We propose that the C. elegans model for TGFβ-like signaling, in which distinct type I receptors determine specificity, may be a general mechanism of achieving specificity in other organisms. These findings distinguish between the manner in which signaling specificity is achieved in TGFβ-like pathways and receptor tyrosine-kinase (RTK) pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specificity of TGFbeta signaling is conferred by distinct type I receptors and their associated SMAD proteins in Caenorhabditis elegans.

In C. elegans, the TGFbeta-like type II receptor daf-4 is required for two distinct signaling pathways. In association with the type I receptor daf-1, it functions in the dauer pathway. In addition, it is also required for body size determination and male tail patterning, roles which do not require daf-1. In an effort to determine how two different signals are transmitted through daf-4, we look...

متن کامل

BMP signaling requires retromer-dependent recycling of the type I receptor.

The transforming growth factor β (TGFβ) superfamily of signaling pathways, including the bone morphogenetic protein (BMP) subfamily of ligands and receptors, controls a myriad of developmental processes across metazoan biology. Transport of the receptors from the plasma membrane to endosomes has been proposed to promote TGFβ signal transduction and shape BMP-signaling gradients throughout devel...

متن کامل

Ventral specification of mesoderm and ectoderm depends on signaling by members of the bone morphogenetic protein (Bmp) family. Bmp signals are transmitted by a complex of type I and type II serine/threonine kinase

During establishment of the body plan, signaling events regulate cellular behavior and specification. Members of the transforming growth factor β (Tgfβ) superfamily of signaling molecules have been shown to be crucial mediators of a variety of such processes (reviewed by Massagué, 1998). In target cells, Tgfβ signaling is transduced by transmembrane receptors of the serine/threonine kinase fami...

متن کامل

Age-Dependent Neuroendocrine Signaling from Sensory Neurons Modulates the Effect of Dietary Restriction on Longevity of Caenorhabditis elegans

Dietary restriction extends lifespan in evolutionarily diverse animals. A role for the sensory nervous system in dietary restriction has been established in Drosophila and Caenorhabditis elegans, but little is known about how neuroendocrine signals influence the effects of dietary restriction on longevity. Here, we show that DAF-7/TGFβ, which is secreted from the C. elegans amphid, promotes lif...

متن کامل

I-34: Steroid Hormone Signalling at the FetomaternalInterface

Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998